Particle Physics Division # Mechanical Department Engineering Note Number: MD-Eng-XXX Date: June 26, 2008 Project: LArTPC Title: ASME Calculations for the "Bo" cryostat top flange Author(s): Terry Tope Reviewer(s): Key Words: Abstract/Summary: Applicable Codes: ASME DIVISION I SECTION VIII ASME DIVISION II SECTION VIII ## **Introduction** A 27.5 inch OD 304 stainless steel flange assembly is used to cap the "Bo" 250 L liquid argon cryostat. The "Bo" cryostat is ASME code stamped and has a MAWP of 35 psig. The flange is 1.5 inches thick and has several penetrations shown in the following three figures. The nozzles attached to the penetrations terminate in either conflat flanges or VCR fittings. Figure 1: Flange assembly drawing. Figure 2: Flange weldment drawing. Figure 3: Flange drawing. Page 5 of 20 ### Flange Thickness and Bolt Loading The required flange thickness is computed with a 0.8 multiplier on the allowable stress per UG-34 case (k) which is for a bolted flat head. $$t = d\sqrt{CP/SE + 1.9Wh_G/SEd^3}$$ *t* = minimum head thickness d = 22.126 inches, inside flange diameter C = 0.3 flange attachment factor S = 0.8 * 16,700 psi = 13,360 psi (lowest value for 304 SS plate found in Section II, Part D, Table 1A multiplied by 0.8 for in house flange construction) E = 1, welded joint efficiency W = 14,728 lbs, total bolt load h_G = 2.847 inch, gasket moment arm, center of gasket reaction to center of bolt hole P = 35 psig, internal design pressure t = 0.80 inch, required thickness The actual flange thickness is 1.5 inches. Appendix 2-5(e) is utilized to calculate the flange design bolt Load W. The bolt loads used in the design of the flange shall be the values obtained from $W = W_{m1}$ such that $$W_{m1} = H + H_p = 0.785G^2P + (2b \times 3.14Gmp)$$ where H = total hydrostatic end force H_p = total joint-contact surface compression load. m = gasket factor, obtain from Table 2-5.1 in Mandatory Appendix 2. For o-ring seals, the gasket factor is 0. $$W_{m1} = 0.785(23.15)^2 35 = 14,728 \ lbs$$ The *Load* on each bolt is then $$Load = W_{ml}$$ / # of bolts = 14,728 lbs/ 16 bolts = 920.5 lbs per bolt Bolt Stress $$Stress = Load / area \text{ of } \frac{3}{4}-10 \text{ bolt}$$ = 920.5 lbs/ 0.3345 inch² = 2752 psi Required *Torque* $$Torque = k \times D \times F$$ ``` k = 0.2 steel fastener D = 0.750 inch bolt diameter F = 920.5 lb clamping load Torque = 0.2 \times 0.750 inch x 920.5 lbs = 138 in-lbs = 11.5 foot lbs ``` The bolts are 18-8 Stainless Steel with a minimum tensile strength rating of 70,000 psi. Nuts are brass with a minimum tensile strength of 55,000 psi. Thus the bolts and nuts have adequate strength with respect to the internal pressure load. ### **Reinforcement of Openings** Due to the pair of 6 inch penetrations having an average diameter greater than 25% of the head diameter, the reinforcement requirements of Section VII DIV I could not be applied. To analyze the reinforcement, a FEA model of the flange was created by Bob Wands and is available in the Appendix. The model shows a peak Von Mises stress of 7,772 psi. The flange is constructed of 304 SS plate. The lowest allowable stress found in Section II Part D for this material is 16,700 psi. Because the flange was constructed at Fermilab without material control, this allowable stress is further reduced to 13,360 psi by applying a 0.8 factor. The latest edition of the pressure vessel code accepts Von Mises stresses after decades of utilizing stress intensity (Section VII Div 2 5.2.2.1). Because the peak Von Mises stress is less than the allowable stress, no further analysis is required. If the peak Von Mises stress had been greater than 13,360 psi, the stress linearization and combination procedures found in Section VIII DIV 2 Part 5 would have been applied. #### **Thickness of the Nozzles Under Internal Pressure** The nozzles attached to the flange are shells under internal pressure. The minimum wall thickness required in the nozzles is calculated per UG-27. Circumferential Stress $$T_{required} = PR/(SE-0.6P)$$ Where, P = 35 psi MAWP R =inside radius of the nozzle S = 0.8 x 14,200 psi = 11,360 psi (lowest value for welded 304 SS tube found in Section II, Part D, Table 1A multiplied by 0.8 for in house flange construction). E = 0.5 joint efficiency Longitudinal Stress $$T_{required} = PR/(2SE + 0.4P)$$ Where, P = 35 psi MAWP R =inside radius of the nozzle S = 0.8 x 14,200 psi = 11,360 psi (lowest value for welded 304 SS tube found in Section II, Part D, Table 1A multiplied by 0.8 for in house flange E = 0.5 joint efficiency The wall thickness required for the nozzles is listed in Table 1. | Table 1. | Mozzlo well | thioknosses re | quirad for 3 | 5 noia | internal pressure. | |----------|-------------|----------------|---------------|--------|--------------------| | Table 1. | NUZZIC Wall | unicknesses re | quiica foi 5. | o parg | internal pressure. | | Nozzle | Nozzle
Wall
Thickness
(inch) | Nozzle Inside
Radius
(inch) | Required Nozzle Wall Thicknesses | | | |--------------|---------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|--| | OD
(inch) | | | Circumferential stress t_min (inch) | Longitudinal stress
t_min (inch) | | | 6.000 | 0.120 | 2.9400 | 0.0178 | 0.0089 | | | 1.750 | 0.065 | 0.8425 | 0.0050 | 0.0025 | | | 0.250 | 0.035 | 0.1075 | 0.0006 | 0.0003 | | | 0.500 | 0.049 | 0.2255 | 0.0012 | 0.0006 | | | 2.500 | 0.065 | 1.218 | 0.0073 | 0.0036 | | ### **Nozzle External Pressure** Because "Bo" can be evacuated, the method prescribed in part UG-28 of the ASME Section VIII Division 1 code is used to calculate the maximum allowable external pressure for the nozzles. The longest length of 6 inch OD tube has a length of 14.5 inches. First D_o / t is calculated where D_o is the pipe outside diameter of 6.000 inches and t is the wall thickness of 0.120 inches. $D_o / t = 6.000 / 0.120 = 50.0$. Because Do / t is greater than 4, calculate L / D_o where L is the length of the cylinder which is 14.5 inches. $L / D_o = 14.5 / 6.00 = 2.42$. Because L/D_o is greater than 0.05 and less than 50, enter Figure G in ASME Section II Part D and locate the value for Factor A. With a $L/D_o = 2.42$ and $D_o/t = 50.0$, Factor A = 0.0015. From Figure HA-1 in Section II Part D, Factor B is 10,200 based on Factor A equal to 0.0015 and the 100 °F modulus curve. Because D_o / t is greater than 10, the maximum allowable external pressure is calculated using $$P = \frac{4B}{3\frac{D_o}{t}} = \frac{4 \times 10,200}{3\frac{6.000}{0.120}} = 272 \, psi.$$ Thus the 6 inch OD tubes can with stand the external pressure due to vacuum. The longest length of 2 1/2 inch OD tube is 6.63 inches long. First D_o / t is calculated where D_o is the pipe outside diameter of 2.500 inches and t is the wall thickness of 0.065 inches. $D_o / t = 2.500 / 0.065 = 38.5$. Because Do / t is greater than 4, calculate L / D_o where L is the length of the cylinder which is 6.63 inches. $L / D_o = 6.63 / 2.50 = 2.65$. Because L / D_o is greater than 0.05 and less than 50, enter Figure G in ASME Section II Part D and locate the value for Factor A. With a L / D_o = 2.65 and D_o / t = 38.5, Factor A = 0.0018. From Figure HA-1 in Section II Part D, Factor B is 11,000 based on Factor A equal to 0.0018 and the 100 °F modulus curve. Because D_o / t is greater than 10, the maximum allowable external pressure is calculated using $$P = \frac{4B}{3\frac{D_o}{t}} = \frac{4 \times 11,000}{3\frac{2.500}{0.065}} = 381 psi.$$ Thus the 2 1/2 inch OD tubes can with stand the external pressure due to vacuum. The longest length of 1 ¾ inch OD tube is 4.44 inch long. Because the 1 ¾ inch OD tube has the same wall thickness as the 2 ½ inch OD tube and is shorter, it can withstand a higher external pressure. ### **Nozzle Penetrations** Two of the three 6 inch OD nozzles have a pair of closely spaced 1.76 inch diameter penetrations as shown in Figure 4. Due to the close spacing of these holes, they are analyzed as an assumed opening that encloses both openings as suggested in UG-42(c). The nozzle walls of the two 1.75 inch OD tubes are considered to have no reinforcing value. Because the assumed opening diameter of 3.82 inches exceeds 50% of the 6 inch OD nozzle diameter, the rules of Appendix 1-10 are used as suggested in UG-36(b)(1). The calculations were performed using the EES software and the details are available in the Appendix. A maximum internal pressure of 107.6 psi was computed for this penetration such that the design is adequate for the 35 psig MAWP of "Bo." Figure 4: Two closely spaced penetrations on the 6 in. OD nozzle. # **Summary** The peak stress in the flange is only 58% of a conservative allowable stress for 304 SS. The nozzles attached to the flange have adequate wall thicknesses. The bolts used to attach the head are properly sized to resist the maximum pressure loading the flange will see. # **Appendix** ## **FEA Model of Flange** July 2, 2008 ## Finite Element Analysis of Reinforcement of Openings in Flare Cryogenic Dewar Top Plate **Bob Wands** ### **Summary** A finite element analysis of the Flare cryogenic dewar top plate is used to verify that the openings in the plate are adequately reinforced per the requirements of the 2007 edition of the ASME Boiler and Pressure Vessel Code, Section VIII, Div. 1, para. U-2(g). The head is constructed of 304 stainless steel. The maximum allowable stress is taken as that of the weakest 304 material listed in the Code tables, that of SA-403 welded fittings. This stress is 17 ksi, compared to the highest strength listed, which is 20 ksi for SA-240 plate. A factor of 0.8 is applied to the 17 ksi, resulting in a maximum allowable stress of 13.6 ksi. The finite element model is shown in Fig. 1. Due to symmetry, only half of the head is modeled. A mesh of 20-node brick elements is used. The perimeters of the bolt holes are constrained to react the pressure loading. A uniform pressure of 35 psi is applied over the head. Additional nodal forces are applied to the perimeters of the holes to represent the pressure force from the missing material, which must appear in thrust through the tube walls which connect to the holes. A reaction force check shows that the model agrees with the expected reaction value (= plate area x 35 psi) to within 1%. The highest stresses (disregarding the concentrations around the constrained bolt holes) occur at the perimeter of the central hole. The stresses in all openings are shown in Fig. 2. No stress exceeds 8000 psi, well below the maximum allowable value of 13.6 ksi. Figure 1. Finite Element Model Figure 2. Von Mises stress at perimeters of openings ### **EES Analysis of 6 in. OD tube penetrations** ``` File:\\.PSF\Work Documents\Flare\EES AND EXCEL Safety Calcs\Bo_nozzles.EES 6/27/2008 5:52:39 PM Page 1 EES Ver. 6.316: #1262: For use only by Terry Tope, Fermi Laboratory, Batavia, IL {This calculation sheet looks at the two closely spaced 1.76" thru holes in the 6 inch OD tubes on "Bo"} {it combines the two holes into one 3.82 inch OD hole that includes both 1.76" OD holes} {From ASME Section VIII Division 1 - Appendix 1-10} {Calculate the limit of reinforcement along the vessel wall} {For integrally reinforced nozzles (NO reinforcing pads) } L_R = 8 * t {effective length of the vessel wall} {nominal thickness of the vessel wall, 6 inch OD tube, 0.120 wall} t = 0.120 {Step 2} {Calculate the limit of reinforcement along the nozzle wall projecting outside the vessel surface} L_H1 = t + 0.78*SQRT(R_n*t_n) L_H2 = L_pr1 + t L_H3 = 8*(t + t_e) L_H = MIN(L_H1, L_H2, L_H3) {effective length of nozzle wall outside the vessel} R n = 3.82 {nozzle inside radius, nozzle wall - thickness does NOT contribute for combined holes} t_n = 0 {nominal thickness of nozzle wall - thickness taken to be ZERO for combined holes} L pr1 = 4 {nozzle projection from outside of the vessel wall} t_e = 0 {thickness of the refinforcing pad - NO reinforcement pad available} {Step 3} {Calculate the limit of reinforcement along the nozzel wall projecting inside the vessel surface} L_I1 = 0.78*SQRT(R_n*t_n) L_12 = L_pr2 {nozzle projection from inside the vessel wall, nozzle does not extend into 6 in OD tube nor can the wall L_pr2 = 0 reinforcing values be used} L_13 = 8*(t + t_e) L_I = min(L_I1, L_I2, L_I3) {effective length of wall inside the vessel} {Step 4} {Determine the total available area near the nozzle opening} A_T = A_1 + A_2 + A_3 + A_41 + A_42 + A_43 + A_5 {Total area within the assumed limits of reinforcement} A_1 = t^*L_R^*MAX(lambda/4,1) {Area contributed by the vessel wall} lambda = min(((d_n+t_n)/SQRT((D_i+t_eff)*t_eff)),10) {ID of nozzle} d n = 3.82 D_i = 6 - 0.120*2 {ID of shell} t_{eff} = 0.12 {effective thickness used in the calculation of pressure stress near the nozzle opening) {area contributed by the nozzle outside the vessel wall} A_2 = t_n^*L_H A_3 = t_n * L_1 {area contributed by the nozzle inside the vessel wall} A_41 = 0 {area contributed by the outside nozzle fillet weld} A_42 = 0 {area contributed by the pad to vessel fillet weld} {area contributed by the inside nozzel fillet weld} A 43 = 0 A_5a = W^te {width of reinforcing pad} W = 0 A 5b = L R*t e A_5 = min(A_5a, A_5b) {area contributed by the reinforcing pad} {Determine the effective radius of the shell} R_{eff} = D_{i/2} {effective pressure radius} {Step 6} {Determine the applicable forces} {force from internal pressure in the nozzle outside of the vessel} f_N = P^*R_n^*(L_H - t) ``` Equations with comments (1/2) ``` f_S = P^*R_eff^*(L_R + t_n) {force from internal pressure in the shell} f_Y = P^*R_eff^*R_nc {discontinuity froce from internal pressure} R_nc = R_n {radius of the nozzle opening in the vessel along the chord} P = 35 {MAWP of Bo} {Step 7} {Determine the effective thickness for nozzles in cylindrical or conical shells as follows} {previously defined in Step 4} {Determine the average local primary membrane stress and the general primary membrane stress in the vessel} sigma_avg = (f_N+f_S+f_Y)/A_T {average primary membrane stress} sigma_circ = P*R_eff/t_eff {general primary membrane stress} {Step 9} {Determine the maximum local primary membrane stress at the nozzle intersection} P_L = MAX(2*sigma_avg - sigma_circ, sigma_circ) {nozzle maximum allowable stress} {Step 10} {The calculated maximum local primary membrane stress should satisfy the following} S_allow = 1.5*S*E {allowable local membrane stress} S = 16700*0.8 {allowable for SS304} E = 1.0 {the weld joint factor, 1.0 if it does not intersect a seam} P_max_1 = S_allow/(2*(A_p/A_t) - (R_eff/t_eff)) P_max_2 = S * (t/R_eff) A_p = R_n * (L_H - t) + R_eff*(L_R + t_n + R_nc) \quad \text{(area resisting pressure, used to determine the nozzle opening discontinuity, use)} 4 for actual L_H value} P_{max} = MIN(P_{max_1}, P_{max_2}) {nozzle maximum allowable pressure} ``` $$L_R = 8 \cdot t$$ $$t = 0.12$$ $$L_{H1} = t + 0.78 \cdot \sqrt{R_n \cdot t_n}$$ $$L_{H2} = L_{pr1} + t$$ $$L_{H3} = 8 \cdot [t + t_e]$$ $$L_{H} = Min[L_{H1}, L_{H2}, L_{H3}]$$ $$R_n = 3.82$$ $$t_n = 0$$ $$L_{pr1} = 4$$ $$t_e = 0$$ $$L_{I1} = 0.78 \cdot \sqrt{R_n \cdot t_n}$$ $$L_{12} = L_{pr2}$$ $$L_{pr2} = 0$$ $$L_{I3} = 8 \cdot [t + t_e]$$ $$L_{1} = Min[L_{11}, L_{12}, L_{13}]$$ $$A_T = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$$ $$A_1 = t \cdot L_R \cdot Max \left[\frac{\lambda}{4}, 1 \right]$$ $$\lambda = Min \left[\frac{d_n + t_n}{\sqrt{(D_i + t_{eff}) \cdot t_{eff}}}, 10 \right]$$ $$d_n = 3.82$$ $$D_i = 6 - 0.12 \cdot 2$$ $$t_{eff} = 0.12$$ $$A_2 = t_n \cdot L_H$$ $$A_3 = t_n \cdot L_1$$ $$A_{41} = 0$$ $$A_{42} = 0$$ $$A_{43} = 0$$ $$A_{5a} = W \cdot t_e$$ Formatted equations (1/2) $$W = 0$$ $$A_{5b} = L_R \cdot t_e$$ $$A_5 = Min[A_{5a}, A_{5b}]$$ $$R_{eff} = \frac{D_i}{2}$$ $$f_N = P \cdot R_n \cdot [L_H - t]$$ $$f_S = P \cdot R_{eff} \cdot [L_R + t_n]$$ $$f_Y = P \cdot R_{eff} \cdot R_{nc}$$ $$R_{nc} = R_n$$ $$P = 35$$ $$\sigma_{avg} = \frac{f_N + f_S + f_Y}{A_T}$$ $$\sigma_{\text{circ}} = P \cdot \frac{R_{\text{eff}}}{t_{\text{eff}}}$$ $$P_L = Max[2 \cdot \sigma_{avg} - \sigma_{circ}, \sigma_{circ}]$$ $$S_{allow} = 1.5 \cdot S \cdot E$$ $$\mathsf{P}_{\mathsf{max},\mathsf{1}} \ = \frac{\mathsf{S}_{\mathsf{allow}}}{2 \cdot \frac{\mathsf{A}_{\mathsf{p}}}{\mathsf{A}_{\mathsf{T}}} - \frac{\mathsf{R}_{\mathsf{eff}}}{\mathsf{t}_{\mathsf{eff}}}}$$ $$P_{\text{max},2} = S \cdot \frac{t}{R_{\text{eff}}}$$ $$A_p = R_n \cdot [L_H - t] + R_{eff} \cdot [L_R + t_n + R_{nc}]$$ $$P_{max} = Min[P_{max,1}, P_{max,2}]$$ #### File:\\.PSF\Work Documents\Flare\EES AND EXCEL Safety Calcs\Bo_nozzles.EES 6/27/ EES Ver. 6.316: #1262: For use only by Terry Tope, Fermi Laboratory, Batavia, IL 6/27/2008 5:53:39 PM Page 1 | $A_1 = 0.131$ | $A_2 = 0$ | $A_3 = 0$ | $A_{41} = 0$ | $A_{42} = 0$ | |---------------------|-------------------|----------------------------|------------------------------|-----------------------| | $A_{43} = 0$ | $A_5 = 0$ | $A_{5a} = 0$ | $A_{5b} = 0$ | $A_p = 13.77$ | | $A_T = 0.131$ | $D_i = 5.76$ | $d_n = 3.82$ | E = 1 | $f_N = 0$ | | $f_S = 96.77$ | $f_Y = 385.1$ | $\lambda = 4.548$ | $L_{H} = 0.12$ | $L_{H1} = 0.12$ | | $L_{H2} = 4.12$ | $L_{H3} = 0.96$ | $L_I = 0$ | $L_{11} = 0$ | $L_{12} = 0$ | | $L_{13} = 0.96$ | $L_{pr1} = 4$ | $L_{pr2} = 0$ | $L_{R} = 0.96$ | P = 35 | | $P_L = 6518$ | $P_{max} = 107.6$ | $P_{\text{max},1} = 107.6$ | $P_{\text{max},2} = 556.7$ | $R_{eff} = 2.88$ | | $R_n = 3.82$ | $R_{nc} = 3.82$ | S = 13360 | $\sigma_{\text{avg}} = 3679$ | $\sigma_{circ} = 840$ | | $S_{allow} = 20040$ | t = 0.12 | $t_e = 0$ | $t_{\rm eff} = 0.12$ | $t_n = 0$ | | W = 0 | | | | | Solution printout (1/1)